A Description of the Number Field Sieve

نویسنده

  • JOSHUA BARON
چکیده

The number field sieve is a relatively new method to factor large integers. Its most notable success is the factorization of the ninth Fermat number. It is significantly faster than all known existing integer factoring algorithms. We examine the theoretical underpinnings of the sieve; after understanding how it works, we state the algorithm. We look mostly to the algebraic number theory aspects of the sieve while leaving the question of the sieve’s computational efficiency to other discussions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid description of collisional current filamentation instability of a weakly ionized plasma in the presence of magnetic field

In this paper, the collisional filamentation instability of an electron beam-weakly magnetized and ionized plasma has been investigated in the presence of background plasma, using the fluid description. By describing the equilibrium configuration in the presence of binary collision terms between charged and neutral particles and using the local approximation method, the dispersion relation (DR)...

متن کامل

On Class Group Computations Using the Number Field Sieve

The best practical algorithm for class group computations in imaginary quadratic number fields (such as group structure, class number, discrete logarithm computations) is a variant of the quadratic sieve factoring algorithm. Paradoxical as it sounds, the principles of the number field sieve, in a strict sense, could not be applied to number field computations, yet. In this article we give an in...

متن کامل

A construction of 3-dimensional lattice sieve for number field sieve over F_{p^n}

The security of pairing-based cryptography is based on the hardness of solving the discrete logarithm problem (DLP) over extension field GF(p) of characteristic p and degree n. Joux et al. proposed an asymptotically fastest algorithm for solving DLP over GF(p) (JLSV06-NFS) as the extension of the number field sieve over prime field GF(p) (JL03-NFS). The lattice sieve is often used for a largesc...

متن کامل

The number field sieve

We describe the main ideas underlying integer factorization using the number field sieve.

متن کامل

MPQS with Three Large Primes

We report the factorization of a 135-digit integer by the triple-large-prime variation of the multiple polynomial quadratic sieve. Previous workers [6][10] had suggested that using more than two large primes would be counterproductive, because of the greatly increased number of false reports from the sievers. We provide evidence that, for this number and our implementation, using three large pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007